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ABSTRACT  
The ability to digest and iterate close to real-time geospatial data will be central to future modelling- and 
simulation-based (M&S) mission planning and rehearsal solutions in volatile, multi-domain scenarios. The 
ability to quickly integrate recently identified assets in M&S applications is a time-dependent bottleneck that 
can only be solved with the automated intake of timely real-world data. 

This paper proposes an end-to-end geospatial pipeline that feeds current geo-data into a 3D digital twin 
environment for mission training and rehearsal. A fully automated solution based on a holistic global aerial 
data set (RGB, NIR, SAR) employs pre-trained ML-models to extract relevant geolocated 3D infrastructure 
and terrain data for a given mission area. A core feature of this technology is an integrated no-code, visual 
data labeling tool that enables non-AI/ML-trained personnel to apply ML analytics on current imagery to 
identify mission critical objects over large scale areas. These detected special interest objects are then 
automatically fed into the pipeline, georeferenced and visually represented in the synthetic rehearsal 
environment. 

With this geospatial metaverse approach, synthetic training environments containing mission critical details 
can be created practically in real time. Future mission planning staffs will therefore have the ability to 
customize rehearsal simulations in an agile manner. 

1.0 MODELLING AND SIMULATION IN TIME-CRITICAL SCENARIOS 

2022 has challenged and changed the global security and defense landscape, especially in the northern 
hemisphere. Western democracies have been impacted by Russia’s invasion of Ukraine and its economic, 
social, and geopolitical implications. Additionally, the ever-looming tensions in the Indo-Pacific region remain 
a constant strategic concern. Both areas have once more shown the need for advanced geospatial planning and 
foresight; be it the status of humanitarian assets along NATO’s borders in Eastern Europe or an in-time 
assessment of the situation along a chain of islands in the South China Sea. 

Geospatial information has demonstrated its paramount importance by enabling early warning signals and 
providing operational insights. In this paper we will present another area of application to harvest geospatial 
information for integrated training and simulation solutions. Governmental (i.e., intelligence communities) 
and commercial geospatial data providers (e.g., Maxar Technologies) deliver an abundance of close-to-real-
time data for a chosen region of interest. For example, Maxar’s satellite fleet can deliver multiple revisit cycles 
per day if needed. The vast amount of generated geospatial data is a typical area of application for modern big 
data analytics backed by advanced machine learning models. Considering these technological advances, we 
will present an end-to-end geospatial platform to digest and analyze captured data (e.g., by drone or satellite) 
and output 3D-envoriments that can enable the next generation of modeling and simulation (M&S) solutions 
for mission critical planning and training. 
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A core feature of this platform is a no-code-based human-supervised interface to integrate new assets of interest 
into the creation of synthetic 3D environments for virtual mission planning and rehearsal. This patented 
innovation enables planners of operations to integrate non-predefined geo-assets into the training and detection 
cycles of the applied ML models. For example, if it is mission critical to find and secure water wells in an area 
of interest (AOI), a mission planner can add this information into the synthetic environment by simply tagging 
a hand full of examples in the provided interface for a given geographic region. The model will then take these 
new geo-labels, integrate them in its analysis cycles and feed representations of wells to the 3D synthetic 
training environment. 

As this paper will show, the presented solution could enhance the plausibility and scope of M&S environments 
in the future. Most importantly, by accelerating the uptake cycles of geospatial analysis and the creation of 
authentic 3D environments, the process between data acquisition, automated analysis and mission planning 
could increase tremendously. This could enable and strengthen future digital twin ecosystems for security and 
defense through all domains (sea, air, land and cyber).  

M&S has a long historic and incremental role in tactical and operational procedures. From early cardboard 
dioramas to current computer simulations, the need to pre-anticipate and forecast imponderabilia is central. 
Typically, the geographic terrain and other components of modern 3D environments are pre-modeled. Other 
relevant rehearsal information (e.g., the position of points, critical infrastructure, etc.) is either added manually 
or imported. This approach is limited to intelligence curated by personnel that is most likely off-site and by 
the long durations to bake these data layers into the synthetic mission scenarios. Considering these current 
limitations and temporal constraints, solutions for time-critical applications or even timely large-scale 
approaches are hard to achieve. This paper will present an innovation to fill the identified gap of synthetic 3D 
simulation augmentation by enabling a very rapid, automatic uptake of mission critical assets. 

2.0 THE POWER OF MACHINE LEARNING APPLIED TO GEOSPATIAL 
DATA 

Advances in machine learning enable fully automated analysis of satellite and aerial images for remote sensing 
purposes [1][2]. This allows large-scale information extraction (country-, continent-, or even planet-wide) 
which in turn empowers M&S applications to cover larger areas than ever before. Basically, machine learning 
(ML) is used to derive the base substrate for 3D digital twins. Given technologies like cloud computing [3][4], 
serverless computing [5] or edge computing [6], an M&S application is no longer limited to small-scale 
scenarios but can seamlessly integrate entire regions of interest. 

Section 2.1 describes the ML-based analysis platform and Section 2.2 gives an example of features extracted 
from input imagery. Those features are then imported into and visualized by the 3D M&S environment. Section 
2.3 discusses an efficient approach to build diverse geotypical 3D environments with limited resources in real 
time. Section 2.4 highlights the importance of timely updates, necessitating the improved labeling and training 
approach discussed in Section 3.0. 

2.1 Architecture of a Geospatial Analysis Platform 
Figure 2-1 (on next page) shows a prototypical architecture of a cloud-native geospatial analysis platform. At 
its core it consists of components for data management, workflow scheduling, training and inference, and user 
interfaces for data analysts and quality assurance as well as labeling. Note that in typical platform 
configurations, ML models are just one component of many orchestrated processes, functions, and data layers 
[7]. Using cloud-based services like blob storage, which are optimized for large workloads [8], container 
technology like Docker (https://docker.com/), orchestration platforms like Kubernetes (https://kubernetes.io/), 
and workflow engines like Flyte (https://flyte.org/) make it feasible to handle and process petabytes of 
geospatial data. 
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The core task of such platforms is operationalizing ML models [9] and assuring their lifecycle [10]. A typical 
ML life cycle contains data management (including typical extract/transform/load (ETL) steps), model 
learning (training), model verification, model deployment, and model execution [10]. The output of such 
processing steps (e.g., building footprints, vegetation masks, feature labels) is typically stored in standard 
formats for raster data (e.g., GeoTiff, or COG), vector data (e.g., GeoJSON, or GeoPackage), or in formats 
ready for consumption by client applications (e.g., USD, CDB, or 3D Tiles). 

 

Figure 2-1: Cloud-based architecture of a typical geospatial analysis platform 

2.2 Extracted Features 
The presented geospatial platform contains a data management solution that is tailored to storing and 
versioning petabytes of georeferenced data and billions of geometrical features. A typical process comprises 
components for importing imagery (or other data types) into the platform, run machine learning models and 
other algorithms on this data, and consequently package the results for distribution to a 3D M&S environment. 
Figure 2-2 shows the general steps required for infrastructure detection in a densely populated area. The input 
image is loaded, roof formations are detected, and splits are analyzed for each respective building; the results 
are vectorized. Roofs and footprints as well as building heights are derived. The networks typically used for 
such tasks are either convolutional neural networks [11] or newer approaches like frame field learning [12]. 

This process has already been validated by commercial cases. For example, the presented framework processed 
the Iberian Peninsula (600,000 km2) on a set of three dozen virtual machines in under 18h. In general, a 
common PC workstation with a single Graphics Processing Unit (GPU) can analyze several square kilometers 
per second with a local installment of the platform. 
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Figure 2-2: Extraction steps of building features 

2.3 3D Visualization and Simulation 
Once features have been extracted from the imagery, they can be used in M&S environments for visualization, 
analysis, planning, training, and other scenarios. The M&S application can be fully independent of the analysis 
platform described in Section 2.1 if both agree on a common format for the data transfer. In our case, we use 
a highly optimized format that can be streamed on demand, requires low bandwidth for transmission and yet 
produces rich and diverse results. The accompanying client software can be integrated into off-the-shelf 3D 
engines like Epic’s Unreal Engine or Unity’s 3D engine as well as propriety rendering engines and simulation 
applications.  

Focusing on buildings and other infrastructure, one can either place ready-made 3D objects or procedurally 
generated objects (that are derived from the input data) into the simulation environment. One drawback of the 
first option is that typically there is only a limited number of 3D objects available. While those objects may 
have very high fidelity, they repeat quite often. Procedurally generated objects can generate an unlimited 
number of unique buildings and structures that fit the input data, e.g., buildings that match the detected 
footprint, building height, roof type, zoning, and other properties. 

Our approach uses a patented procedural technology called Procedural Grammar Generator (PGG) [13] that 
takes in a diverse set of data sources and produces a matching digital twin in real-time. Other data sources – 
apart from detected features from input imagery – might include digital elevation models (DEM), road and rail 
networks, water bodies, and points of interest. The data representation is very efficient: for example, 1.5B 
buildings can be stored in about 30 GB (excluding textures) which enables storing a twin of the entire earth on 
mobile devices. The flexibility of PGG is achieved by a domain-specific language for describing building 
blueprints that are malleable and adaptable to the input data [14]. This enables a geotypical, diverse 
representation of regions across the entire planet. Figure 2-3 (next page) shows an example of three regions. 

2.4 Timeliness of Updates 
Depending on the use case, timeliness of updates is of utmost importance. The time from image capture to 
availability in the simulation environment should be as short as possible. This necessitates a fully automated 
approach. 
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Figure 2-3: Geotypical rendering using PGG: Tuscany (Italy), Cairo (Egypt), and San Jose 
(California) 

Given the architecture described above, one can see how new imagery is processed by each component in turn. 
The sequential nature of these steps might pose a problem when large swaths of data are ingested or updated. 
While geospatial data lends itself to easy parallelization, problems appear on the boundaries of the discrete 
work items that are scheduled for computation: later steps might need additional context from neighboring 
work items to function correctly. E.g., a vectorization step needs context for structures that span said item 
boundaries. With traditional scheduling frameworks, optimal parallelization either requires computing context 
areas multiple times, which is unnecessary overhead, or scheduling is reduced to simple parallelization within 
each step, but sequentially processing each step. This unnecessarily extends time to first simulation results and 
might not optimally use available compute resources. Our platform deploys a geospatially aware scheduling 
algorithm [15] that reduces turnaround times as it can take geospatial context dependencies into account when 
scheduling work items in parallel. Using this approach, first results are available without delay. 

This still leaves a gap: only features where pre-trained ML models are available for detection can be used 
automatically. New features require a lengthy training process to generate reliable ML models. Ad hoc training 
of models by personnel in the field is not an option. In the next section, we are going to describe an approach 
for near real-time training for timely updates. 

3.0 NEAR REAL-TIME TRAINING AND DETECTION 

The methods and procedures outlined in Section 2.0 presume that machine learning models have already been 
trained on the desired detection classes and features. While efficient models will be available ahead of time 
(e.g., models for common infrastructure and vehicles), novel situations might require models for new classes 
to be trained ad hoc. The traditional approach would be to first generate a set of training data by a group of 
data analysts, then train the model, evaluate its quality, and eventually deploy it in the field. A process that 
potentially involves many people and takes considerable time. 

3.1 Instant Feedback Labeling and Training 
The presented solution utilizes a technique called Live Labeling. This approach contains a no-code, visual data 
labeling tool that enables non-AI/ML-trained personnel to apply ML analytics to novel data requirements in a 
fraction of the time of traditional state-of-the-art methods. With its short iteration time, its reduced need for 
personnel, and its integration into a 3D simulation environment, it is well suited for time-critical applications 
and scenarios. Figure 3-1 depicts the time and resources efficiency of this novel approach in comparison to a 
classic labeling approach to create geo-labels. Live Labeling outperforms classic approaches in the time spent 
per label as well as the cumulative number of created labels in the same duration. 
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Figure 3-1: Speed and output comparison of classic vs. Live Labeling approaches 

The visual interface of Live Labeling is shown in Figure 3-2. With a few strokes, an analyst identifies objects 
of interest (left-hand side). On the right-hand side the current inference of the model is shown. An analyst can 
zoom and pan the image, quickly identifying false positives and negatives and simply adding additional labels 
to correct those errors. Within minutes, the model achieves a high degree of accuracy. 

 

Figure 3-2: UI of Live Labeling in action; left the user’s annotation space, right the real-time 
prediction mask by the model under training 

The interface is intuitive and due to its immediate visual feedback, it is easy to learn and understand. ML 
models are no longer a black box since data labelers see how each label improves (or worsens) the model’s 
detection accuracy. Hence, training new or additional personnel for this labelling tool can be done in a timespan 
of some hours to days, depending on the detection class, image quality, desired detection quality, and previous 
domain knowledge of the trainee. In our experience it is possible to onboard new data analysts in less than two 
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days. Together with the speedup of labeling, this ease of use enables ad hoc training of people as required by 
the use case. Smaller labeling teams also mean that it is easier to form a team and find people who have the 
necessary security clearance. 

3.2 Live Labeling Architecture  
Live Labeling achieves its immediate feedback (new training epochs within seconds) by splitting the model 
into two training streams, as shown in Figure 3-3: one master/global model, which is continuously trained on 
all training data available, and one iterative/local model that is used for the visualization. The iterative model 
only takes the current training image as input and has a very high learning rate, hence magnifying the impact 
of every label made by the analyst. On the other hand, the master/global model uses a more conservative 
learning rate, eventually producing higher quality detections than the iterative model. Once quality criteria are 
satisfied, the master model can be run on large-scale areas from inside the same interface. 

 

Figure 3-3 High-level schematic of the machine learning concept [16] 

3.3 Example Scenario Using Close to Real-time Object Detection 
Live Labeling can run on off-the-shelf hardware with consumer-grade GPUs. As such it can be used by 
personnel in the field, off-grid without network connection to the cloud. An example use case is depicted in 
Figure 3-4 (next page) in which local up-to-date imagery is captured by drones. This imagery is imported and 
one or two data analysist start labeling for a new detection class, e.g., transportation trucks. Within short time 
the first trucks and false positives are labeled. From there, Live Labeling guides the labeling process – by 
presenting additional uncertain results for labeling – and runs inference on ever larger areas, eventually 
covering the entire data. 

The position of all detected trucks is then forwarded to the 3D simulation environment and ready-made 3D 
objects are placed at the given positions in the digital twin arena, as seen in Figure 3-5. In the 3D environment, 
one can visualize the count and distribution of the transportation trucks and, e.g., simulate their predicted route 
or obstacles in their path. The resources necessary for such a scenario fit inside a single server with enough 
disk capacity to store the input imagery and housing a handful of GPUs. Analysts can either use PC 
workstations or laptops for data entry as well as the 3D M&S environment. 
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Figure 3-4: End-to-end use case for near real-time training, object detection, and simulation 

      

Figure 3-5: Data and activity of the end-to-end use case: (1) input imagery, (2) labeling trucks, (3) 
inference on imagery, (4) visualization in M&S application                

4.0 FUTURE WORK 

The described novel approach in Section 3.0 has been successfully demonstrated in several business cases. 
Live Labeling performs well when applied to scenarios where the segmentation requirements do not demand 
pixel-precise boundaries between labeling classes. Currently, object detection and segmentation with instance 
detection is a separate processing step independent of Live Labeling. Future work will therefore focus on 
integrating and enhancing the object detection capabilities of the Live Labeling tool to provide a wider range 
of potential use cases. The user interface of the tool is also constantly improved for better feedback, user 
experience, and performance. 

In general, the proposed geospatial end-to-end framework needs further generalization for integration into 
multi-domain environments. For now, the pre-trained ML models are specialized on earth-bound geo-assets. 
Multi-domain simulations will require a more holistic detection capability to also cover e.g., seaborn assets. 
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In addition, to integrate with existing M&S environments, export data formats such as CDB [17] or 3D Tiles 
[18] need to be supported. The challenge there is that our custom approach (using PGG) does not retain all its 
properties when 3D objects are baked into other formats. E.g., the size of the data set explodes hundred-fold, 
as those formats store the 3D mesh itself instead of meta properties like PGG does. Also, some features like 
client-side coloring and layered rendering cannot currently be represented in those formats leading to poorer 
visual quality. We are working actively on solutions to these challenges. 

5.0 CONCLUSION 

This paper has illustrated the potential power of a fully integrated geospatial end-to-end framework for future 
Modelling and Simulation as a Service (MSaaS) approaches. With the right base conditions (compute 
resources, data acquisition & access, system integration) timely mission planning scenarios can be created and 
delivered on the fly for all defense and other domains. By harnessing the described ML-based human-involved 
approach, future training environments will become closer to reality and customizable for non-AI-experts. The 
acceleration of the data acquisition, analysis and mission planning cycle is thereby a key advantage. 

The discussed technology could also have a broader impact that goes beyond the immediate use-case 
highlighted in this paper. Future digital twin applications for defense purposes will be generated more quickly 
creating more informed mission scenarios by making the complexity of fully integrated systems 
comprehensible and manageable. Ultimately, switching between live missions and training environments 
could become so seamless that it will blur the boundaries between real-world operations and synthetic mission 
scenarios. 
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